Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally, not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity, harmful responses, and factual inaccuracies. While domain-adaptive training has been employed to mitigate these issues, these techniques often address all model parameters indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In this paper, drawing inspiration from fault localization via program slicing, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair. This approach selectively targets the most error-prone sections of the model for repair. Specifically, we propose dynamically slicing the model’s most sensitive layers that require immediate attention, concentrating repair efforts on those areas. This method enables more effective repairs with potentially less impact on the model’s overall versatility by altering a smaller portion of the model. Furthermore, dynamic selection allows for a more nuanced and precise model repair compared to a fixed selection strategy. We evaluated our technique on three models from the GPT2 and GPT-Neo families, with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density than the remaining 80%. This highlights the need for selective repair. Additionally, we demonstrate that a dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a robust and efficient repair.more » « lessFree, publicly-accessible full text available June 19, 2026
- 
            Deep Learning (DL) techniques are increasingly being incorporated in critical software systems today. DL software is buggy too. Recent work in SE has characterized these bugs, studied fix patterns, and proposed detection and localization strategies. In this work, we introduce a preventative measure. We propose design by contract for DL libraries, DL Contract for short, to document the properties of DL libraries and provide developers with a mechanism to identify bugs during development. While DL Contract builds on the traditional design by contract techniques, we need to address unique challenges. In particular, we need to document properties of the training process that are not visible at the functional interface of the DL libraries. To solve these problems, we have introduced mechanisms that allow developers to specify properties of the model architecture, data, and training process. We have designed and implemented DL Contract for Python-based DL libraries and used it to document the properties of Keras, a well-known DL library. We evaluate DL Contract in terms of effectiveness, runtime overhead, and usability. To evaluate the utility of DL Contract, we have developed 15 sample contracts specifically for training problems and structural bugs. We have adopted four well-vetted benchmarks from prior works on DL bug detection and repair. For the effectiveness, DL Contract correctly detects 259 bugs in 272 real-world buggy programs, from well-vetted benchmarks provided in prior work on DL bug detection and repair. We found that the DL Contract overhead is fairly minimal for the used benchmarks. Lastly, to evaluate the usability, we conducted a survey of twenty participants who have used DL Contract to find and fix bugs. The results reveal that DL Contract can be very helpful to DL application developers when debugging their code.more » « less
- 
            Feldt, Robert; Zimmermann, Thomas; Basili, Victor R; Briand, Lionel C (Ed.)Recent work has shown that Machine Learning (ML) programs are error-prone and called for contracts for ML code. Contracts, as in the design by contract methodology, help document APIs and aid API users in writing correct code. The question is: what kinds of contracts would provide the most help to API users? We are especially interested in what kinds of contracts help API users catch errors at earlier stages in the ML pipeline. We describe an empirical study of posts on Stack Overflow of the four most often-discussed ML libraries: TensorFlow, Scikit-learn, Keras, and PyTorch. For these libraries, our study extracted 413 informal (English) API specifications. We used these specifications to understand the following questions. What are the root causes and effects behind ML contract violations? Are there common patterns of ML contract violations? When does understanding ML contracts require an advanced level of ML software expertise? Could checking contracts at the API level help detect the violations in early ML pipeline stages? Our key findings are that the most commonly needed contracts for ML APIs are either checking constraints on single arguments of an API or on the order of API calls. The software engineering community could employ existing contract mining approaches to mine these contracts to promote an increased understanding of ML APIs. We also noted a need to combine behavioral and temporal contract mining approaches. We report on categories of required ML contracts, which may help designers of contract languages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available